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Two variants of the kinematic and dynamic conditions on the contact surface be- 

tween an elastic shell and an ideal fluid are presented in Lagrange coordinates 
for separation-free and impermeable motion, The discussion of the singularities 

of these versions is performed for the plane problem, where the mutual slip along 

the contact surface is successfully taken completely into account. Furthermore, 
an extension of one of the versions for writing the conditions is given for the thr- 

ee-dimensional problem in which the mutual slip is small. The shell thickness 

is considered small compared to its characteristic dimensions, in which connec- 

tion the contact surface is identified with the middle surface of the wall. 
A formulation of the problem for both media in Lagrange variables may turn out 
to be most convenient for a study of the interaction between an elastic body and 

a fluid in certain cases. In particular, among these is the case in which the fluid 

and shell motion occurs primarily along the normal to the undeformed surface, 

and therefore, the mutual slip is relatively slight. An important example is the 

problem describing the process of hydrodynamic stamping of thin-walled pieces 

from a sheet billet. 

1. Specifics of a single Lagrange representation. Toillustrate 
the methods of writing the juncture conditions, strong bending of a beam by a force p 

constant in time and with a fixed line of action in space (Fig. 1) is considered. For instan- 

ce, let this be the weight of a rod moving freely in rigid guides. There is no friction be- 
tween the rod and the beam. During flexure, the point m of the beam with Lagrange 

coordinate cx turns out to be under a force P, at some point in space, which had 

been at a point m’ with the coordinate a’ prior to deformation. This latter occupies 

a new position in space, but, however, retains the same value of the coordinate CL’ nu- 

merically. The force p (d) will also have the Lagrange coordinate a’. 

The force along the normal to the cambered axis equals P (a‘> / c"s p (a)? 
where B is the angle between the unit vectors along the normal at the @Mm(a) be- 

fore and after deformation, Xt is known [l] that cos fi (a) = 1 -k dv (a> / aa. Here 

and henceforth, 2, (a), 7.U (a) and 2, (a’), W (a’) denote projections of displace- 

ments of the points m (a) and m’(d)along the axis prior to deformation. The bending 
equations for a distributed system of forcesp (o’)will be 

(1.1) 
(i = 2, 3) 

518 
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where La*, L3* ar e nonlinear differential operators of the large bending equations 
obtained by projecting all the forces on the axis after deformation, and 6ai is the Kro- 

necker symbol. 
The behavior of the system under consideration possesses the fundamental properties 

of interaction between the elastic body and the fluid: the magnitude of the pressure and 

the slip between the media depend on the bending of the beam. Similar q~~estions, par- 

ticularly the procedure for calculating the work performed by the forces “wandering” 
along the beam, have been discussed in [a]. 

The P (a’) in the right side of (1.1) is expressed in terms of the pressure at the point 

m (a) 

p (a') = p (a) + (a’ - a) ap (a) 1 aa (1.2) 

From Fig. 1 it follows that cz - CL’ = -V (u), hence (1.1) reduces to 

(1.3) 

Li* [U (a), W (U)] = &i [ 1 + v]-’ [Jl (U) + U (U) ‘%$I (i = 2,3) 

Fig. 1 

The expression (1.3) remains valid until the greatest value of a satisfies the condi- 

tion u < L + 2, (4, where -& is the beam length. For u > L -I- V (L) 
the quantity in the last bracket on the right side of (1.3) should be set equal to zero 
(in the example under consideration v (L) < 0), which corresponds to the remov- 

al of part of the forces from the beam because of the displacement of its endpoint 

a = L. 
The boundary conditions are 

(1.4) 
v (a) = w (a) = M (a) = 0 (o = 0) 

w(u) =M(a) =O, N(u)cosp(u)-Q(a)sinp(u) =0 (a=L) 
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where N, i+f, Q are the axial force, bending moment, and transverse force, respec- 
tively. 
When the load P (a) is rapidly varying, and the beam displacement varies smoothly (for 
example, for a concentrated force), an equation in another form must be used in place 
of (1.3). The relation between the displacement components of the points m (a) and 

m’ (U’) can be represented in the following form to second order accuracy: 

(L5) 

7) (4 
av (a’) 

z== u(d) + (a- a’>yg, w (a) = w (a’) + (a - a’) fg$ 

From Fig. 1 there follows that v (a’) = mm’ cos 6 la’). Since mm’ = U - U’ 

and COS p (U’) = 1 4 dv (U’) ! aa’, then 

Cl.61 
U-Us’_; - v (a’) II 1 + -%$I-’ 

Taking account of (X.6), the relationship (1.5) and any functionN(u)can be written to 
the accuracy taken as: 

(1.7) 

av (a') 
v(a)=v(u’)-v(a’)--&p . . . . N(a) = N(d)- v(a’)qp 

The derivation will equal 

&J (4 aw (d) azw (d) a*w (a) a*w (a') -= 
aa ---U((a’)T, -=-- 

aa’ al? au** 
asw (d) 

_* Wf -T&T- 7 * * - 

hence, the differentiation operation is performed with respect U’ in the operators 
Li* of (1.1) reduced to the form 

(1.8) 
Lzi* L v (a’) - u (cd) ep , w(u’) - v(d) q-g-q = 

43i 
i 

an (a’) 
j + da’ 1 

-1 
P te 

second order quantities are discarded in the brackets in the right side of (I. 8). The 
load p (U’)should be equated to zero for values of U' > L -k 2) (L) 
There is no mutual slip at the fastened endpoint of the beam (U = 0) hence conditions 
(1.4) retain their previous form 

(1.9) 
2, (a’) ‘- w (a’) -- IM (a’) = 0 (a’ = 0) 
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while the conditions on the sliding support (o * L) are written thus: 

&J (a’) 
w (a’) - v (a’) 7 = 

() (1.10) 

M(d)- v(uq!p -- 0, N(d)-v((a’)~ = 0 

This last expression is presented for the case when the term Q sin 6 in (1.4) is small 

compared to the first. It is also easily written in complete form. It is important to no- 
te that conditions (1.10) should be satisfied for a variable value of a’ = L $- 8 (L)* 

The discussion presented will be used later when writing the general contact conditions. 

2. Kinematic and dynrmic condftlonr on the surface. It is 
assumed that the geometric parameters of the shell vary smoothly, the fluid particles 

do not separate from its surface, and do not leave its surface because of the relative mo- 

tion. Slipping between the media can be due to shell deformations, as in the example 
considered above, and the independent motion of the fluid. The total value of the slip 

should be small compared with the length on which a significant change in the deform- 

ation and pressure fields occurs in the media (for example, with the wavelength). 

Attime t - 0 the orthogonal curvilinear system of Lagrange coordinates or, 

a,, us is assumed common for the elastic body and the domain occupied by the fl- 
uid. Contact between them is realized along the surface css = aso (Fig. 2). The 
coordinates al, a2 are directed along the lines of principal curvature of the 

surface. In particular, the nondeformed state of the elastic body (as in the previous ex- 
ample) can be taken as the time t = 0 . Therefore, the same Lagrange coordinates 
are ascribed to adjacent points on both sides of the interfacial surface us0 at the 

initial moment. Although these material points later diverge while remaining on the 
same surface Us0 and move along different trajectories, the value of their coordi- 
nates will be numerically identical. Hence, the contact conditions in the presence of 

slip will be compiled for points having different values of the Lagrange coordinates on 
the contact surface, for instance, (a,, CZ,, us’) and (a,‘, u2’, as’). 

Thus the point m (a, 9 %C %‘) 
the fluid particle IM’, 

of the elastic body coincides at the time t with 
on the same surface aso, 

a21 for t = 0 
but having the coordinates a,‘, 

(Fig. 2). The new positions of the points m’ (a,‘, CQ’, 
a$, and M (4, f12, G) are also shown in the Figure. The kinematic condi- 
tion will be [3] 

Q (a,, a2* %') + u (a,, '32, (X2', t) = Q (a;, a,‘, a,“;2;1) 

u (al’* a2’, Q0, q 

Here Q is a radius-vector, and uj T_J are displacement vectors of particles 
elastic body and the fluid. 
In the case of an ideal fluid the dynamic conditions have the form 

(2.2) 

oks (a,, u2, us’, t).ki* (a,, u2, t) = 0 (i=ie 2) 

‘J& (a,, UP, aso, t)‘n,* (a,, a21 t> = --P (a,‘, a2’, %‘, t, 

of the 
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where @Tii~ is the stress vector on an area which had the normal k, 
ation; ki* are unit vectors along the tangents to the coordinate lines 

prior to deform- 
ai at the poi- 

nt m after deformation, and ns* is the unit vector along the normal. The pressure 
in the fluid P is related to the density and the displacement vector components Ur, 
U,, Us by means of the motion and continuity equations. The relationships between 

the umt directions k,, k,*, 13,” contain the displacement components of the el- 
astic body %, =a, a3 and their derivatives [4]. 

Fig. 2 

ff the elas@z body is a thin-walled shell, its middle surface can be taken as the 

contact surface a3 ‘= %* t Hence, (2.1) is not changed, but the equations 

(2.3) 

will replace (2.2) where 4** L2*, L,* are nonlinear differential op- 

erators of the theory of shells which correspond to forming the equations of motion by 
summing the projections of all the forces on the coordinate axes after deformation 113. 
The displacements can be on the order of the characteristic dimension of the shell, and 
the deformations are assumed small compared with-one. According to the Kirchhoff- 

Love hypothesis k,* = ns*. 
The support condition&” 

are given the boundary sections of the shell, 
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The right sides in the conditions (2. Q-(2.3} can be expressed in terms of functions de- 
fined in the ne~~h~~h~d of the point m @I, a2r aa”) with the local tri- 
hedron ki (aI7 %) prior to deformation. The components &, Ui 
are hence introduced in the form 

(2.5) 

u = ki (a,, a&i ((~1, ~2, a:, 0, U = ki;h, a,)Ui (a,, a2, Go, t) 

Another version of the relationships on the contact surface is obtained if the left sides of 
(2, X)-(2.4) are expressed in terms of functions given at the point mt (al’, as’, aSO1. 
In this case 

(2.6) 

u = ki (a,‘, a& (a,‘, ccs’, a,“, t), U = kf (al’, a,‘)Uf (a,‘, 

%), aan, f> 

i.e., %t UL will be displacement projections of the same particle of the elastic 
body and the fluid as above in the directions of the unit vectors ki (al’, 01%‘) at 
the point m’ (a,‘, as’, ci;,O). 
The features of these two versions for writing the conditions are discussed later for the 
problem in the cc, ot3 plane, after which a genera~~at~on of the necessary rela- 
tionships for the three-dimensional problem is given. 

3, Ffrot vcrtion of the condttfont, The functions P and U 
are assumed analytic in c&+,. whereupon the right side in (2, I) can be expanded in a 
Taylor series in the neighborhood of the point m (as, as”). If three terms 
are retained in this expansion, and the Fresnet formula is used, then it follows from (2. 
1) that 

U(%, t>-- u (aat t) + (aa’ - oz) i- (3” J) 

Here ha, ha are Lam& coefficients, The two scalar equations obtained from (3. I) 
and (2.5) by subtracting one from tb.e other and by adding can be reduced to ‘linear and 
quadratic equations in (oaf _ o+f. The first yields 

(3*2) 
as’ - aa = A (CL-~, t)t @,a = “I&,, + St, 

1 (Uz--Ud~+(%--fJ3) A(a‘&t)=- 
h2 (1 + J%d F + @, 

F= 

The parameters &8zt &s, QI, characterizing the deformation and mean ro- 
tation of a volume element of the fluid, are analogous to the corresponding parameters 
in the theory of elasticity [4] 
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After elimination of (as’ - a2) from the quadratic equation, the kinematic con- 
dition on the contact surface between an elastic body and an ideal fluid takes the form 

f@3- ~,>(I + E22) - @2 - U2)@231 [(2 + E22) I*' -t @231 -!- (3.4) 

_L- 1% - u, +- @2 - U2) w ~~ @2-t- h&22) -t- ~ 823]--cp 2r2,z 

The right sides in (2,2) and (2.3) are also expanded in a Taylor series in the neigh- 
borhood of the point m (CQ, as”),and the difference 
the relationship (3.2). 

(aa’ - a,) is replaced by 
In the case of a thin-walled shell the dynamic conditions will 

therefore have the form 

(3.51 

A2 azp 
- - 2 aa 1 (ag=aso) 

If there is no mutual slip between the media in contact (% = us), then acc- 
ording to (3.4) and (3.5) 

us = us, Li” [U2 (a27 0, 4 = b3iP (($7 aa”, t> 
(3.6. f 

Therefore, for arbitrary but mutually equal shell and fluid displacements along the 
tangential coordinate, the kinematic condition in linear independently of the magnit- 
ude of the normal displacements, in contrast to the cases of the &ler and the mixed 
~~~~~~ge approaches. 

The intermediate case between conditions (3.4)-(3.6) holds when the inequality 

1 up. - u, I< 2h,2 (1 + z&z)” [& (ha + h2E22) + z 8231-l 

which corresponds to retaining the first two members of the expansion in (3.1). is sat- 
isfied. The kinematic and dvnamic conditions hence become 

(3.7) 

These last conditions are obtained in [YJ for the three~dimensional problem. In a 
linear approximation, conditions (3.4), (3.5) as well as (3. ‘I), (3.3) agree with the 
corresponding conditions written in the mixed Bier-Lagrange form. Velocity compon- 
enkfigure in the latter in place of the displacement components. However, the linear 
ized expressions (3.43, (3.7) and the right sides (3.Q (3.3) differ from the analogous 
conditions in mixed form. If (p” and cp denote the velocity potential in a fluid for an 
absolutely rigid boundary CX,$ = a; (d$/Oa, = 0) and its perturbation because 
of boundary displacement by u2, us, then the kinematic condition linearized with 
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where $i are Euler coordinates which can here be identified with the Lagrange coord- 
inates Ui and 0, is the angle of rotation of a shell section along the coordinate line as. 

Representing the total displacement and pressure in the form 

Qi’ =; ui” + ui, ui* = nir p* = p” 4 p (i -29 3) 

we find the linearized condition (u3” = aU3’lda2 = o Ha a3 = a3’) &xn (3.7): 

( 
1 +$&Vu,- Us) - -__?L Us0 (Us - Us) - (3.W 

h,h38a3 

UC&J&$&- = 
au3 0 

W% ) 

Condition (3.10) and the linearized rignt side of (3.8) differ from (3.9) and the 
linearized right side of the dynamic conditions of mixed type in structure. Moreover 
derivatives of the displacement and pressure components in the fluid with respect to the 
coordinate figure in (3.7), (3.8), (3.10) and components of the shell displacement are 
in the form of the functions themselves. In certain problems this circumstance can be 
considered a disadvantage of this variant in writing and the conditicns. For example, 
if the field in the fluid is rapidly varying (high-frequency vibrations, shocks, etc. ) 
and it is determined approximately, then a loss of accuracy occurs because of differen- 
tiation. The second variant in the writing of the conditions. For example, if the field 
in the fluid is rapidly varying (high-frequency vibrations, shocks, etc.) and it is deter- 
minea approximately, then a loss of accuracy occurs because of differentiation, The 
second variant in the writing of the conditions is free of this disadvantage. 

4. Second variant of the Iconditions, Expansion of the left side of the 
vector equation f2.1) in a Taylor series in the neighborhood of the point m’ with co- 
ordinates aa’, asp (Fig. 2) yields 

(4.1) 

a2 - a2’ = A (G’, t), 023 = 1/2 e23 -I- a1 

The representation (2.6) has been used here. The quantities e22, %3 are ob- 
tained from (3.3) by replacing ui and a2 by Ui and as’ ,.. In the case of a thin- 
walled shell h, = 1. ah,iasg ‘G h2k22 where kss is the curvature of the 
middle surface and the quantity h,.(as) can be taken as the Lamk coefficient for the 
middle surface to the accuracy of hk,, (h is the shell thickness) as compared to one. 
The quantity es, hence agrees with 0s in (3.9). 

In the second variant, the displacement and pressure components are functions o f 
the argument a2’: derivatives are also taken with respect to as’ *The quantities A (as, 

t), and A (a,‘, t) are different functions. For instance, the relationships 
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a2 - a2' = -4, (a2) and (1.6), which were used in Sect. 1, follow from 
(3,2) and (4.1) in a Cartesian system and for .T_T, z 0 . The denominator and 
numerator in (3.2) and (4.1) must hence be divided by F 
The kinematic condition of the second variant has the form 

and f. 

(4.2) 

f(u3 - h)(i -I- %a) - (US - ~J&l~l(f + eaz)f + 023] + & x 

iv3 - h -i- (UZ - ~I)JI'[-&-(~~ i_ h2e2,> + 

$&&3] = 0 (c%=%") 
.3 3 

Representing (4.1) as a2 = a2' + A ta2'r t)t we will have the following dynam- 
ical conditions instead of (2.3) and (2.4): 

Condition (4‘4) should be satisfied for a iariable value of rxs’ = aa0 + A (azD, t), 
where cQ” is the coordinate of the bounda~ section of the shell. If the support condi- 
tions % (a2, t) = 743 (a%, t) = 0, . . I (a% = a;), have been posed on the shell ed- 

ges for the equation of motion (3.5) in the first variant, for example, then the now be- 

come 

uy(aa, t) = uv @2', t) + A (a,', t,-$ + 

AZ d2U, 
- .2 = 0 

2 aa, 
(Q’ = a2” f A (as’, t)) 

where A (a:, tj will depend only on the fluid parameters because n2 (as’, 

t) = U, (@so, t) = 0 since 

Therefore, in contrast to the first variant of writing the conditions, as is seen from (4. I)- 

(4.4) there are no derivatives of the fluid parameters Ui, p,in the second variant, whi- 
ch may be considered Its advantage. However, the equations of shell motion and the 

boundary conditions on its section (4.3) and (4.4) turn out to be more complex than in 

the first variant. Hence, the question of which is more preferable should be resolved in 
an examination of specific problems. Conditions of the first variant admit of simplifica- 

tion in the consideration of particular kinds of fluid motion and its physical properties, 
while conditions of the second variant simplify in the examination of different kinds of 

shell deformation. 
According to (4. J.), (4.2) we have U, -= us, A = 0, for Us = us and 
both variants of writing the conditions are identical in form. 
If we limit ourselves to two terms in the Taylor series, the kinematic condition (4.2) is 
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written as follows: 

onty terms containing A (as’, 0, A (p-,6, t) to the first degree &dd France be re- 
tained in (4.3), (4.4). The latter are: 

(4.6) 

In contrast to (3. IO), the linearized condition (4.5) 

is similar in structure to (3.9). In the case of a flat plate and a homogeneous initial fi- 
eld in the fluid (Us” = U,O (t), U, = 0) they agree in form if the displacement 
components in (4.7) are replaced by the corresponding velocity components. It is evid- 
ently impossible to identify as’ and Xs =;z: a, in this case. 
The disp~cement f.TBu along IX** will be constant, say, for reciprocating motion of an 
ideal incompressible fluid along the boundary of a half-wee. The m~imum fluid dis- 
placement should hence satisfy the constraint mentioned in Sect, 2 for the presented e- 
quations to he applicable,If there is flow with constant velocity, then it is necessary to 
limit the time during which the process is considered. In this latter case the problem 
should be fo~ulated in mixed form for an arbitrary time interval f5f. 
According to (4.6) s f&e functions A (g2’, t) and B (CC,? t) in the dynamic 
conditionrl(4,3), (4.4 ), will have the form: 

(4.8) 

Q(a,‘, t)= -y$, A fa20t t) = - % (1 -+- s)-’ 

In the case of a homogeneous field in the fluid A (%‘r t, = -A to%‘, t, = 
U;/h, . 
As an ilIustration, let us reduce the equation 

to the form It should have in the second variant, Here 2 = &$% Z’ = ksd~;s’, If we 
limit ourselves to the case (4.7), (4.8) and take into account that I? is independent 
of the longitudinal coordinate, then 
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Here and henceforth (Q’) atld fP> denote the arguments (@I’- %s’ f 6 and 

f% % 9. The expres&n for 42 @‘I is stages from bI {$) by mrr- 

tual replacement of the subscripts 2 and Z and also by replacing os by -6%. 

We have in the relationships M)~’ = $ + hi (F) 
(5.31 
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Here V is the Hamilton operator in the coordinates or’, %‘. The expressions (5. 

4) can be written in the unit vectors ki prior to deformation by means of known for- 

mulas relating ki*, DS*, ki- 
The expressions eij, ok are simplified correspondingly in the consideration of a 

thin-walled shell, therefore (5. l), (5.2) are also simplified somewhat. The dynamic- 

al conditions (2,3), (2.4) are written in the form 

(5.5) 

Terms containing Al (P’) and As (P’) in just the first degree should be taken into 
account in addition to the fundamental terms in (5.5). 

The author is grateful to L. I. Balabukh and L. A. Galin for discussion and comments, 
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